

Impact of States' Adoption of Response to Interventions (RTI) on Disability Identifications

Zhiling M. Shea, PhD – University of Nevada, Las Vegas

This white paper is a submission to CRPE's [request for analysis](#) of our [Special Education Data Center](#) and has not been peer reviewed. The findings presented reflect the views of the author and do not necessarily reflect the views of CRPE or CRPE's funders.

Introduction

Students with disabilities often face developmental, academic, and social challenges throughout their educational trajectory (Petersen, 2012). Public policies play an important role in shaping services for these students by ensuring opportunities for optimal growth and development. Policies like the Individuals with Disabilities Education Act (IDEA) determine the eligibility criteria for services and regulate the methods and locations of service delivery. In turn, the policy levers within IDEA can either bolster the provision of beneficial services to students with special needs or, conversely, obstruct their access to necessary services.

To better identify and serve students with specific learning disabilities (SLD) or with other special needs, the federal government included in the 2004 reauthorization of IDEA, a policy mandate to scale up Response to Intervention (RTI) [IDEA 2004, Sec. 614.b.6.B]. States then started requiring RTI in schools.¹ RTI is a multi-tiered, data-driven system of instruction that provides increasing levels of support to students based on their individual learning needs. RTI is also a comprehensive evaluation criterion that is used for both the identification of students with SLD and intervention provision purposes. Specifically, RTI includes evidence-based instruction, screening and monitoring assessments, and targeted interventions across school years (Berkeley et al., 2009; Fletcher et al., 2019). In 2006, fifteen states adopted RTI, with more states gradually joining after 2006 (Zirkel & Thomas, 2010).

¹ Please note that the federal government introduced RTI in 2004, but states did not change their practices until 2006. Consequently, the RTI start year is considered 2006 moving forward.

National IDEA data show that the implementation of RTI coincided with a noticeable slowing—and in some states, a reversal—of the long-term upward trajectory in SLD identification rates, which had risen steadily from the 1975 through the early 2000s (Office of Special Education Programs [OSEP], 2023; Shifrer et al., 2011). At the same time, national reading achievement trends have been declining or stagnating for more than a decade. For example, fourth-grade reading scores began to plateau around 2012 and have declined significantly in the years since, with 2022 marking the largest drop in reading achievement attributed to the pandemic (National Center for Education Statistics [NCES], 2022, 2023). These diverging patterns of stable special education identification alongside worsening achievement raise concerns about whether RTI is supporting the students who need them most.

Yet, scientific evidence of the effects of statewide introduction on students' identification rates for SLD and disabilities remains limited (Hughes & Dexter, 2022). Recent studies have investigated the effects of specific state RTI policies and found that SLD rates significantly decreased after RTI implementation (Ainsworth et al., 2024; Gilmour et al., 2023; Hall-Mills, 2021). However, these findings may be specific to the states examined and may not generalize to other states' responses to the federal RTI policy, given the diverse ways RTI has been adopted nationwide. Some states fully mandated RTI implementation, including the use of RTI as an identification model for SLD, whereas others merely encouraged or supported RTI adoption without specifying implementation requirements. As a result, more research is needed to rigorously evaluate the impact of RTI adoption disability rates, particularly SLD, at the national level.

We address this research gap by causally examining how the national adoption of RTI across states affected whether students in that state were identified with SLD. We use a differences-in-differences (DID) framework to leverage the variation in the timing of states' RTI adoption to isolate the impacts of the policy change on SLD identification. We use data from 2000 to 2019 to capture the full span of state RTI implementation. States varied substantially in their timelines and approaches to RTI adoption: some required RTI by law, others supported RTI through guidance or funding, and many did not formally adopt statewide RTI policies (Zirkel & Thomas, 2010; Education Commission of the States, 2020). This cross-state variation offers a unique opportunity for causal analysis.

Current Study

Leveraging the 2004 federal mandate, we explore patterns of SLD and disability identification rates before and after RTI adoption across states. We then investigate whether states' adoption of RTI affected SLD and disability rates across the country and whether states with distinct RTI adoption methods had differential impacts on outcomes. In so doing, we contribute to this policy literature by conducting the first causally informative analysis that leverages the variation in the timing of RTI adoption across different states. Utilizing a quasi-experimental design we effectively isolate the impact of state-introduced RTI on student disability identification across states. Our study timeframe, 2000-2019, allows us to fully capture changes in state RTI policy before and after IDEA (2004) reauthorization.

We ask three research questions:

- RQ 1: What are the patterns of SLD and disability identification rates before and after RTI adoption across states over time?
- RQ 2: Does state RTI adoption lead to changes in identification rates for SLD and disabilities?
- RQ 3: How do disability identification changes differ across states with varying RTI adoption policies (i.e., no RTI policy, RTI supported but not mandated, and RTI required by law)?

Methods

Data

Our analysis data is integrated from multiple sources and is aggregated at the state and year levels. We used the Federal Information Processing Standard (FIPS) for states and years to merge the datasets. The sources include states' Department of Education websites, reports from the Institute of Education Sciences, and the papers of Berkeley et al. (2009) and Zirkel & Thomas (2010), Unlocking Potential Data Center (UPDC), the Office of Special Education Programs (OSEP) under Individuals with Disabilities Education Act (IDEA), CDC wonder, and the American Community Survey (ACS).

Measures

Treatment Variable

State RTI adoption. State RTI adoption. RTI status is an indicator variable that equals 1 in the years a state adopted RTI (i.e., a state adopted RTI in a specific year) and 0 otherwise. For example, Colorado adopted RTI in 2005. Colorado thus has a

value of 1 for the RTI indicator variable from 2006 to 2018 and 0 for the years before 2006. The variable information is primarily drawn from sources on each state's Department of Education website, multiple reports from the Institute of Education Sciences (Detgen et al., 2011; Harr-Robins et al., 2009; Sawyer et al., 2008; Stepanek & Peixotto, 2009), and the papers (Berkeley et al., 2009; Zirkel & Thomas, 2010).

Appendix Table 1 lists the RTI start year for each state by its switching status: those that had RTI early between 2006 and 2008 ("early-switched states"), those that had RTI later than 2009 ("later-switched states"), and those that never had RTI ("never-on states") as of 2018. Figure 1 shows the adoption of RTI across states by year. The number of states that adopted RTI increased gradually from 2006 to 2015. The first state adopted RTI in 2006, and the last state began in 2017. Fifteen states adopted RTI in 2006, and forty-five states required RTI by 2017, providing sufficient variation to support the analysis.

Indicated in Appendix Table 2, we used the evidence from Detgen et al. (2011), Harr-Robins et al. (2009), Sawyer et al. (2008), and Stepanek & Peixotto (2009), to further categorize states into three groups: (1) states that never adopted RTI (e.g., AK) or not in law (e.g., AL), (2) states that supported RTI implementation (e.g., OR), and (3) states that required RTI (e.g., NY). For never RTI states (n=8), states have not adopted RTI, or RTI was not in state law. For RTI-supported states (n=27), RTI is considered a promising practice, not mandatory. The state supports its development as part of broader educational strategies, and the traditional discrepancy model is often continuously used for identifying SLD. Districts can develop and implement their own

RTI systems. For RTI-required states (n=16), districts and schools are required to implement RTI models for identifying SLD.

Outcome Variables

The proportions of students identified with all disabilities and SLD. The measure for the proportion of students with disabilities is calculated by using the aggregated count of all types of disabilities present in public schools derived from UPDC, OSEP, and CDC data. We calculated the proportion of students with disabilities by dividing the total number of students between 6 and 21 with disabilities in a state and year by the total number of 6- to 21-year-old students enrolled in schools in that state and year. Similarly, we calculated the proportion of students with SLD by dividing the total number of students between 6 and 21 with SLD in a state and year by the total number of the 6-21-year-old students enrolled in schools in that state and year.

Covariates

All covariates are presented in Table 1 from ACS.

Empirical Framework

We use a DID framework to exploit policy changes during the period in which individuals were exposed to RTI during their school years. This method enables three comparisons: first, we compare the changes in disability outcomes in states that adopted RTI to changes in these outcomes in states that did not; second, we compare the changes in outcomes before states introduced RTI to the changes in outcomes after states adopted RTI; Third, we compare changes in outcomes for states that adopted RTI with changes observed in states that had not yet adopted the policy.

Event Study

The main identifying assumption of a DID design is the existence of parallel trends in outcomes between treatment and control groups before the start of treatment. In this study, parallel trends mean that the proportion of students identified with disabilities, or the proportion of students identified with SLD would be parallel between states with and without RTI in the absence of RTI adoption. Specifically, we tested the plausibility of the parallel trends' assumption and found no systematic pre-existing trends.

Results and Implications

Descriptive Analysis Results

To answer our first research question, we plotted the trends of SLD and disability rates by each state over time with the RTI adoption year, and the SLD and disability rates by states relative to the RTI adoption year. Figures 3 and 4 display the percentage of students (K–12) identified with SLD and disabilities over time (2000–2019), with the gray bars indicating each state's RTI adoption year. As indicated in Figure 3, the proportion of students identified with SLD declined gradually following RTI adoption across most states. This suggests that the RTI adoption intended to improve early identification and intervention may have reduced SLD classifications, at least temporarily, during the post-adoption years. However, the decline is not uniform. Some states (e.g., AZ, GA, WA) show steady rates, while others (e.g., FL, NC, NY, MA) exhibit clear downward trends after adoption. Figure 4 indicates that across most states, the percentage of students identified with disabilities remained relatively stable

between 2005 and 2019, typically hovering between 12% and 15%. This pattern aligns with national data showing that while the disability identification rate fluctuated slightly, there was no detectable national increase or decrease following RTI adoption. Some states (e.g., IA, NC, NY, WA) show a slight decline in disability identification, but other states (e.g., AZ, CA, CO, MA) show stable or even slight increases after RTI adoption. Several states (e.g., FL, GA, OH) maintained flat trajectories, implying little change before and after RTI adoption.

Figures 5 and 6 present the trends in the proportion of students identified with SLD and disabilities relative to each state's year of RTI adoption. The vertical dashed red lines represent the year of first RTI implementation in each state, and the horizontal axis shows years relative to adoption. Figure 5 indicates that across most states, SLD identification rates appear relatively stable before RTI adoption but show modest declines within five years post-adoption, followed by leveling off. For example, states (e.g., IA, FL, NC) indicate clear downward trends following RTI adoption, while others (e.g., CA, TX), show minimal change. The variation likely reflects differences in states' RTI policy implementations fidelity: some states mandated RTI for SLD eligibility decisions, while others allowed multiple identification methods. Figure 6 shows that disability identification rates remained largely stable before and after adoption, though several states (e.g., NC, FL, IA) showed modest declines within five years post-adoption.

Impacts of RTI on SLD and Disability Identification Rates

Table 2 presents the main results examining the impact of RTI adoption on SLD and overall disability identification rates. The analyses were conducted separately for

four sets of state groupings: (1) all states, (2) states that supported RTI versus states that required RTI, (3) states that required RTI versus those without RTI, and (4) states that supported RTI versus those without RTI. After running the (1) states model, we first tested for heteroskedasticity among states, indicating significant variation in the residuals across states (F -test = 6.16, $p < .001$). This result suggests considerable heterogeneity in states' post-RTI trajectories, potentially reflecting differences in policy implementation (e.g., identification model) influencing identification practices. We then ran models (2)-(4) described above because of the variations in RTI adoption methods.

When all states were considered together, RTI adoption was associated with a reduction of approximately 0.23 percentage points (Column 1; $p = .011$) or 3.8% percent change in the proportion of K-12 students identified with SLD. This negative effect remained marginally significant when comparing states that required RTI with those that supported RTI (Column 2; $\beta = -0.002$, $p = .058$) and when comparing states that required RTI with those without RTI (Column 3; $\beta = -0.003$, $p = .059$). The RTI effect was also statistically significant when comparing states that supported RTI versus those without RTI (Column 4; $\beta = -0.002$, $p = .019$).

The event study results present similar findings in Figures 7-8. The figures indicate event study plots with relative time to RTI adoption on the x-axis and the difference in SLD and disabilities identification rates for K-12 students on the y-axis. A dashed line is plotted at time 0 to represent the first year that states adopted RTI. Ninety-five percent confidence intervals are displayed in blue shade for each pre- and post-treatment point estimate. As indicated in Figure 7, RTI adoption had a significant effect on SLD identification. In the first six years after RTI adoption, the SLD

identification rate declined about 0.20 percentage points. In all post-treatment years, except for the first year of RTI adoption (year 0) and six years after (year 5), the ninety-five percent confidence intervals do not overlap with 0, indicating that the effects are statistically significant at the .05 level. Notably, the effects of RTI adoption are no longer significant at the .05 level after six years of RTI adoption. Given that the average SLD identification rate for RTI states prior to RTI adoption was 6%, these changes represent 2.21% to 3.83% declines compared to baseline identification rates. Looking at the pre-RTI period, all point estimates are close in magnitude to 0, while none are statistically distinguishable from 0 at the .05 level. This suggests that the observed declines in SLD identification after RTI adoption reflect changes brought about by RTI adoption rather than the continuation of a preexisting trend in SLD identification.

In contrast, RTI adoption did not significantly affect the overall disability identification rate. Coefficients are near zero across all comparisons (ranging from –0.0001 to -0.0002), none reaching statistical significance. Although the plot of event study (Figure 8) shows a slight decline in disabilities rate after the first year of RTI adoption, none of these points are significant at the .05 level. One possibility of the null effect on overall disability identification may reflect offsetting increases in proportions of other disability types such as students identified with autism or developmental delay.

Overall, the results indicate RTI adoption corresponds with a small but statistically significant reduction in the proportion of students identified with SLDs, with no change in the overall disability rate. This finding is consistent with theoretical expectations and empirical work on within state RTI adoption (Ainsworth et al., 2024;

Gilmour et al., 2023; Hall-Mills, 2021). The results from different comparison groups suggest substantial variation across states — the effects appear strongest for states that required RTI (rather than states that supported RTI), likely reflecting better alignment between guidance and implementation capacity. Given that RTI depends heavily on classroom-level data collection, progress monitoring, and intervention delivery, the small magnitude of effects may indicate challenges in implementation.

The regression results align with the descriptive trends illustrated in Figures 3–6, which show substantial heterogeneity across states following RTI adoption. While some states (e.g., FL, IA, NC) demonstrated modest declines in SLD identification rates within several years post-adoption, others exhibited stable or even slightly increasing trends. These descriptive differences are reflected in the regression analyses, which reveal a small but statistically significant reduction in SLD identification rates (-0.21 percentage points) across states adopting RTI, with no measurable change in overall disability identification.

References

Ainsworth, N., Cleveland, C., & Penner, A. (2024). The Effects of Response to Intervention on Disability Identification and Achievement. (EdWorkingPaper: 24-1010). Retrieved from Annenberg Institute at Brown University: <https://doi.org/10.26300/72jm-2m09>

Al Otaiba, S., Kim, Y.-S., Wanzek, J., Petscher, Y., & Wagner, R. K. (2014). Long-Term Effects of First-Grade Multitier Intervention. *Journal of Research on Educational Effectiveness*, 7(3), 250–267. <https://doi.org/10.1080/19345747.2014.906692>

Angrist, J. D., & Pischke, J.-S. (2008). *Mostly Harmless Econometrics: An Empiricist's Companion*. Princeton University Press.

Aron, L., & Loprest, P. (2012). Disability and the Education System. *The Future of Children*, 22(1), 97–122. <https://www.jstor.org/stable/41475648>

Artiles, A. J. (2015). Beyond responsiveness to identity badges: Future research on culture in disability and implications for Response to Intervention. *Educational Review*, 67, 1–22.

Artiles, A. J., Kozleski, E. B., Dorn, S., & Christensen, C. (2006). Learning in inclusive education research: Re-mediating theory and methods with a transformative agenda. *Review of Research in Education*, 30(1), 65–108. <https://doi:10.3102/0091732x030001065>

Baker, A. C., Larcker, D. F., & Wang, C. C. (2022). How much should we trust staggered difference-in-differences estimates?. *Journal of Financial Economics*, 144(2), 370–395.

Ballis, B., & Heath, K. (2019). *The Long-Run Impacts of Special Education*. Retrieved

from <https://brianaballis.weebly.com>

Balu, R., Zhu, P., Doolittle, F., Schiller, E., Jenkins, J., & Gersten, R. (2015). Evaluation

of Response to Intervention practices for elementary school reading. *National*

Center for Education Evaluation and Regional Assistance, November, 1–308.

<https://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=NCEE20164000>

Bender, W. N., & Shores, C. (2007). Response to intervention: A practical guide for

every teacher. *Council for Exceptional Children: Arlington, VA.*

Berkeley, S., Bender, W. N., Gregg Peaster, L., & Saunders, L. (2009). Implementation

of response to intervention: A snapshot of progress. *Journal of Learning*

Disabilities, 42(1), 85–95. <https://doi.org/10.1177/0022219408326214>

Berkeley, S., Scanlon, D., Bailey, T. R., Sutton, J. C., & Sacco, D. M. (2020). A

Snapshot of RTI Implementation a Decade Later: New Picture, Same Story.

Journal of Learning Disabilities, 53(5), 332–342.

<https://doi.org/10.1177/0022219420915867>

Borusyak, K., Jaravel, X., & Spiess, J. (2022). Revisiting event study designs: Robust

and efficient estimation. *cemmap working paper* (No. CWP11/22). Centre for

Microdata Methods and Practice (cemmap), London.

<https://doi.org/10.47004/wp.cem.2022.1122>

Burns, M. K., Appleton, J. J., & Stehouwer, J. D. (2005). Meta-Analytic Review of

Responsiveness-To- Intervention Research: Examining Field-Based and Research-

Implemented Models. *Journal of Psychoeducational Assessment*, 23(4), 381–394.

<https://doi.org/10.1177/073428290502300406>

Burns, M. K., Kanive, R., & DeGrande, M. (2012). Effect of a Computer-Delivered Math

Fact Intervention as a Supplemental Intervention for Math in Third and Fourth Grades. *Remedial and Special Education*, 33(3), 184–191.
<https://doi.org/10.1177/0741932510381652>

Buyssse, V., Peisner-Feinberg, E., Soukakou, E., Fettig, A., Schaaf, J., & Burchinal, M. (2016). Using Recognition & Response (R&R) to improve children's language and literacy skills: Findings from two studies. *Early Childhood Research Quarterly*, 36, 11–20. <https://doi.org/10.1016/j.ecresq.2015.11.005>

Callaway, B., & Sant'Anna, P. H. C. (2021). Difference-in-Differences with multiple time periods. *Journal of Econometrics*, 225(2), 200–230.
<https://doi.org/10.1016/j.jeconom.2020.12.001>

Catts, H. W., Nielsen, D. C., Bridges, M. S., Liu, Y. S., & Bontempo, D. E. (2015). Early Identification of Reading Disabilities Within an RTI Framework. *Journal of Learning Disabilities*, 48(3), 281–297. <https://doi.org/10.1177/0022219413498115>

Ciolfi, A. A. and Ryan, J. E., Race and Response-to-Intervention in Special Education (2011). *Howard Law Journal*, 3, Available at SSRN:
<https://ssrn.com/abstract=1756841>

Coutinho, Martha J., and Donald P. Oswald. (2000). Disproportionate representation in special education: A synthesis and recommendations. *Journal of Child and Family Studies*, 9(2), 135-156.

Cullen, J. B. (2003). The impact of fiscal incentives on student disability rates. *Journal of Public Economics*, 87(7–8), 1557–1589. [https://doi.org/10.1016/S0047-2727\(01\)00203-1](https://doi.org/10.1016/S0047-2727(01)00203-1)

Dexter, D. D., Hughes, C. A., & Farmer, T. W. (2008). Responsiveness to Intervention: A

Review of Field Studies and Implications for Rural Special Education. *Rural Special Education Quarterly*, 27(4), 3–9. <https://doi.org/10.1177/875687050802700402>

Dhuey, E., & Lipscomb, S. (2011). Funding Special Education by Capitation: Evidence from State Finance Refor. *Education Finance and Policy*, 6(2), 168–201.

Dodge, K. A., Bai, Y., Ladd, H. F., & Muschkin, C. G. (2017). Impact of North Carolina's Early Childhood Programs and Policies on Educational Outcomes in Elementary School. *Child Development*, 88(3), 996–1014. <https://doi.org/10.1111/cdev.12645>

Education Commission of the States. (2020). Response to Intervention (RTI) policies and state guidance. Education Commission of the States.

Elder T. E., Figlio D. N., Imberman S. A., Persico C. L. (2021). School segregation and racial gaps in special education identification. *Journal of Labor Economics*, 39, S151–S197. <https://www.journals.uchicago.edu/doi/full/10.1086/711421#>

Fairbanks, S., Sugai, G., Guardino, D., & Lathrop, M. (2007). Response to Intervention: Examining Classroom Behavior Support in Second Grade. *Exceptional Children*, 73(3), 288–310. <https://doi.org/10.1177/001440290707300302>

Farkas, G. (2020). Achievement Gaps and Multi-Tiered System of Supports in California. *Policy Analysis for California Education, PACE*. Retrieved on March 1, 2022 from <https://files.eric.ed.gov/fulltext/ED605086.pdf>.

Fien, H., Smith, J. L. M., Smolkowski, K., Baker, S. K., Nelson, N. J., & Chaparro, E. (2015). An Examination of the Efficacy of a Multitiered Intervention on Early Reading Outcomes for First Grade Students at Risk for Reading Difficulties. *Journal of Learning Disabilities*, 48(6), 602–621. <https://doi.org/10.1177/0022219414521664>

Fletcher, J. M., & Miciak, J. (2019). The Identification of Specific Learning Disabilities: A Summary of Research on Best Practices. *Grantee Submission*.

Fletcher, J. M., Denton, C., & Francis, D. J. (2005). Validity of Alternative Approaches for the Identification of Learning Disabilities. *Journal of Learning Disabilities*, 38(6).
<https://doi.org/10.1177/00222194050380061101>

Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2007). *Learning disabilities: From identification to intervention*. Guilford Press.

Fletcher, J. M., & Vaughn, S. (2009). Response to Intervention: Preventing and Remediating Academic Difficulties. *Child Development Perspectives*, 3(1), 30–37.
<https://doi.org/10.1111/j.1750-8606.2008.00072.x>

Ford, D. Y. (2004). *Intelligence testing and cultural diversity: Concerns, cautions, and considerations* (RM04204). Storrs: University of Connecticut, The National Research Center on the Gifted and Talented.

Fuchs, D., Mock, D., Morgan, P. L., & Young, C. L. (2003). Responsiveness-to-Intervention: Definitions, Evidence, and Implications for the Learning Disabilities Construct. *Learning Disabilities Research and Practice*, 18(3), 157–171.
<https://doi.org/10.1111/1540-5826.00072>

Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The Prevention, Identification, and Cognitive Determinants of Math Difficulty. *Journal of Educational Psychology*, 97(3), 493–513.
<https://doi.org/10.1037/0022-0663.97.3.493>

Fuchs, L. S., Fuchs, D., & Hollenbeck, K. N. (2007). Extending Responsiveness to Intervention to Mathematics at First and Third Grades. *Learning Disabilities*

Research & Practice, 22(1), 13. <http://www.census.gov/Press-Release/>

Fuchs, L. S., & Vaughn, S. (2012). Responsiveness-to-Intervention. *Journal of Learning Disabilities*, 45(3), 195–203. <https://doi.org/10.1177/0022219412442150>.

Gershenson, S., Holt, S. B., & Papageorge, N. W. (2016). Who believes in me? The effect of student–teacher demographic match on teacher expectations. *Economics of Education Review*, 52, 209–224. <https://doi.org/10.1016/j.econedurev.2016.03.002>

Gilmour, A. F., Harper, J., Lloyd, B., & Van Camp, A. (2023). Response to Intervention and Specific Learning Disability Identification: Evidence From Tennessee. *Journal of Learning Disabilities*, 00222194231215013.

<https://doi.org/10.1177/00222194231215013>

Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. *Journal of Econometrics*, 225(2), 254–277.

<https://doi.org/10.1016/j.jeconom.2021.03.014>

Grigorenko, E. L., Compton, D. L., Fuchs, L. S., Wagner, R. K., Willcutt, E. G., & Fletcher, J. M. (2020). Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. *The American Psychologist*, 75(1), 37–51. <https://doi.org/10.1037/amp0000452>

Grosche, M., & Volpe, R. J. (2013). Response-to-intervention (RTI) as a model to facilitate inclusion for students with learning and behaviour problems. *European Journal of Special Needs Education*, 28(3), 254–269.

<https://doi.org/10.1080/08856257.2013.768452>

Hall-Mills, S. (2021). Shifting Prevalence Patterns for Special Educational Needs in the

Era of Response-to-Intervention Policy. *Frontiers in Education*, 6.

<https://doi.org/10.3389/feduc.2021.676646>

Harr-Robins, J. J., Shambaugh, L. S., & Parrish, T. (2009). The status of state-level response to intervention policies and procedures in the West Region states and five other states. The status of state-level response to intervention policies and procedures in the. *Evaluation*, 077. <http://ies.ed.gov/ncee/edlabs>.

Harry, B., & Klingner, J. (2014). Why are so many minority students in special education?. *Teachers College Press*.

Hoover, J. J., Baca, L., Wexler-Love, E., & Saenz, L. (2008). *National Implementation of RTI: Research Summary*.

Hoover, J. J. (2010). Special education eligibility decision making in response to intervention models. *Theory Into Practice*, 49(4), 289-296.

Hughes, C. A., & Dexter, D. D. (2022). *The Use of RTI to Identify Students With Learning Disabilities: A Review of the Research*. RTI Network, The National Center for Learning Disabilities. <http://www.rtinetwork.org/learn/research/use-rti-identify-students-learning-disabilities-review-research>

Jimerson, S. R., Burns, M. K., & VanDerHeyden, A. M. (Eds.). (2016). *Handbook of response to intervention: The science and practice of multi-tiered systems of support* (2nd ed.). New York, NY: Springer Science.

Kavale, K. A., & Spaulding, L. S. (2008). Is Response to Intervention Good Policy for Specific Learning Disability? *Learning Disabilities Research & Practice*, 23(4), 169–179. <https://doi.org/10.1111/j.1540-5826.2008.00274.x>

Kovaleski, J. F., VanDerHeyden, A. M., Runge, T. J., Zirkel, P. A., & Shapiro, E. S.

(2022). *The RTI approach to evaluating learning disabilities*. Guilford Publications.

Lipsey, M. W., Farran, D. C., & Durkin, K. (2018). Effects of the Tennessee Prekindergarten Program on children's achievement and behavior through third grade. *Early Childhood Research Quarterly*, 45, 155–176.
<https://doi.org/10.1016/J.ECRESQ.2018.03.005>

Mahitivanichcha, K., & Parrish, T. (2005). The Implications of Fiscal Incentives on Identification Rates and Placement in Special Education: Formulas for Influencing Best Practice. In *Source: Journal of Education Finance* (Vol. 31, Issue 1).
<https://about.jstor.org/terms>

Mckinney, E., Bartholomew, C., & Gray, L. (2010). RTI and SWPBIS: Confronting the problem of disproportionality. *NASP Communiqué*, 38, 6.

Milburn, T. F., Lonigan, C. J., Allan, D. M., & Phillips, B. M. (2017). Agreement among traditional and RTI-based definitions of reading-related learning disability with preschool children. *Learning and Individual Differences*, 55, 120–129.
<https://doi.org/10.1016/j.lindif.2017.03.011>

Morgan, H. (2020). Misunderstood and mistreated: Students of color in special education. *Voices of Reform*, 3(2), 71-81. Retrieved from
<https://www.voicesofreform.com/article/18595-misunderstood-and-mistreated-students-of-color-in-special-education> doi: 10.32623/3.100005

Morgan, Paul L., George Farkas, Marianne M. Hillemeier, and Steve Maczuga. (2012). Are minority children disproportionately represented in early intervention and early childhood special education? *Educational Researcher*, 41(9), 339-351

Morgan, Paul L., George Farkas, Marianne M. Hillemeier, Richard Mattison, Steve

Maczuga, Hui Li, and Michael Cook. (2015). Minorities are disproportionately underrepresented in special education: Longitudinal evidence across five disability conditions. *Educational Researcher*, 44(5), 278-292.

Morgan, Paul L., George Farkas, Michael Cook, Natasha M. Strassfeld, Marianne M. Hillemeier, Wik Hung Pun, and Deborah L. Schussler. (2017). Are Black children disproportionately overrepresented in special education? A best-evidence synthesis. " *Exceptional Children*, 83(2), 181-198.

Morgan, P. L., Staff, J., Hillemeier, M. M., Farkas, G., & Maczuga, S. (2013). Racial and ethnic disparities in adhd diagnosis from kindergarten to eighth grade. *Pediatrics*, 132(1), 85–93. <https://doi.org/10.1542/peds.2012-2390>

Muschkin, C. G., Ladd, H. F., & Dodge, K. A. (2015). Impact of North Carolina's Early Childhood Initiatives on Special Education Setting in Third Grade. *Educational Evaluation and Policy Analysis*, 37(4), 478–500.
<https://doi.org/10.3102/0162373714559096>

National Center for Education Statistics. (2022). The nation's report card: 2022 reading assessment. U.S. Department of Education, Institute of Education Sciences.

National Center for Education Statistics. (2023). NAEP long-term trends. U.S. Department of Education.

O'Connor, R. E., Bocian, K. M., Beach, K. D., Sanchez, V., & Flynn, L. J. (2013). Special Education in a 4-Year Response to Intervention (Rti) Environment: Characteristics of Students with Learning Disability and Grade of Identification. *Learning Disabilities Research & Practice*, 28(3), 98–112. <https://doi.org/10.1111/lrdp.12013>

O'Connor, R. E., Bocian, K. M., Sanchez, V., & Beach, K. D. (2014). Access to a

Responsiveness to Intervention Model. *Journal of Learning Disabilities*, 47(4), 307–328. <https://doi.org/10.1177/0022219412459354>

Office of Special Education Programs. (2023). *IDEA Section 618 data: Annual reports to Congress on the implementation of IDEA*. U.S. Department of Education.

Parks, N. (2011). *The Impact of Response to Intervention on Special Education Identification*. Electronic Theses and Dissertations. 385. <https://digitalcommons.georgiasouthern.edu/etd/385>

Petersen, D. (2012). Policy: Its history, intentions, and consequences for children with special health care needs. In *Handbook of Children with Special Health Care Needs* (pp. 1–22). Springer New York. https://doi.org/10.1007/978-1-4614-2335-5_1

Rios-Avila, Fernando (2021). drdid and csdid: Doubly robust DID with multiple time periods, *Economics Virtual Symposium*, 7, *Stata Users Group*.

Reynolds, C. R., & Shaywitz, S. E. (2009). Response to Intervention: Ready or not? Or, from wait-to-fail to watch-them-fail. *School Psychology Quarterly*, 24(2), 130–145. <https://doi.org/10.1037/a0016158>

Ruggles, S., , Flood, S., Sobek, M., Brockman, D., Cooper, G., Richards, S., and Schouweiler, M. (2023). *IPUMS USA: Version 13.0* [dataset]. Minneapolis, MN: IPUMS, 2023. <https://doi.org/10.18128/D010.V13.0>

Sullivan, Amanda L (2011). Disproportionality in special education identification and placement of English language learners. *Exceptional Children*, 77(3), 317–334.

Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225(2), 175–199.

<https://doi.org/10.1016/j.jeconom.2020.09.006>

Torgesen J. K. (2009). The Response to Intervention instructional model: Some outcomes from a large-scale implementation in Reading First schools. *Child Development Perspectives*, 3(1), 38–40. <https://doi.org/10.1111/j.1750-8606.2009.00073.x>

Tran, L., Sanchez, T., Arellano, B., & Swanson, H. L. (2011). A meta-analysis of the RTI literature for children at risk for reading disabilities. In *Journal of Learning Disabilities* (Vol. 44, Issue 3, pp. 283–295).

<https://doi.org/10.1177/0022219410378447>

University of Kentucky Center for Poverty Research. (2022). *UKCPR National Welfare Data, 1980-2020*. Available at <http://ukcpr.org/resources/national-welfare-data> (Accessed April 2, 2022)

U.S. Department of Education, Office of Special Education Programs. (2020). *IDEA Section 618 Data: Part B Child Count and Educational Environments*. Retrieved from <https://www2.ed.gov/programs/osepidea/618-data/state-level-data-files/index.html>

VanDerHeyden, A. M., & Witt, J. C. (2005). Quantifying the context of assessment: Capturing the effect of base rates on teacher referral and a problem-solving model of identification. *School Psychology Review*, 34, 161–183.

VanDerHeyden, A. M., Witt, J. C., & Gilbertson, D. (2007). A multi-year evaluation of the effects of a Response to Intervention (RTI) model on identification of children for special education. *Journal of School Psychology*, 45(2), 225–256.

<https://doi.org/10.1016/j.jsp.2006.11.004>

Vaughn, S., Linan-Thompson, S., & Hickman, P. (2003). Response to Instruction as a Means of Identifying Students with Reading/Learning Disabilities. *Exceptional Children*, 69(4), 391–409. <https://doi.org/10.1177/001440290306900401>

Vaughn, S., Wanzek, J., Linan-Thompson, S., & Murray, C. S. (2007). Monitoring Response to Supplemental Services for Students at Risk for Reading Difficulties: High and Low Responders. In *Handbook of Response to Intervention* (pp. 234–243). Springer US. https://doi.org/10.1007/978-0-387-49053-3_17

Voulgarides, C. K., Fergus, E., & King Thorius, K. A. (2017). Pursuing Equity: Disproportionality in Special Education and the Reframing of Technical Solutions to Address Systemic Inequities. *Review of Research in Education*, 41(1), 61–87. <https://doi.org/10.3102/0091732X16686947>

Wanzek, J., & Vaughn, S. (2007). Research-Based Implications From Extensive Early Reading Interventions. *School Psychology Review*, 36(4), 541–561. <https://doi.org/10.1080/02796015.2007.12087917>

Wanzek, J., & Vaughn, S. (2011). Is a three-tier reading intervention model associated with reduced placement in special education? *Remedial and Special Education*, 32(2), 167–175. <https://doi.org/10.1177/0741932510361267>

WestEd. (2004). Responsiveness to intervention: A promising alternative for identifying students with learning disabilities. *R&D Alert*, 6(1). Retrieved on March 9, 2022 from https://www2.wested.org/www-static/online_pubs/RD-04-01.pdf

Zirkel, P. A., & Thomas, L. B. (2010a). State Laws and Guidelines for Implementing RTI. *TEACHING Exceptional Children*, 43(1), 60–73. <https://doi.org/10.1177/004005991004300107>

Zirkel, P. A., & Thomas, L. B. (2010b). State Laws for RTI: An Updated Snapshot.

TEACHING Exceptional Children, 42(3), 56–63.

<https://doi.org/10.1177/004005991004200306>

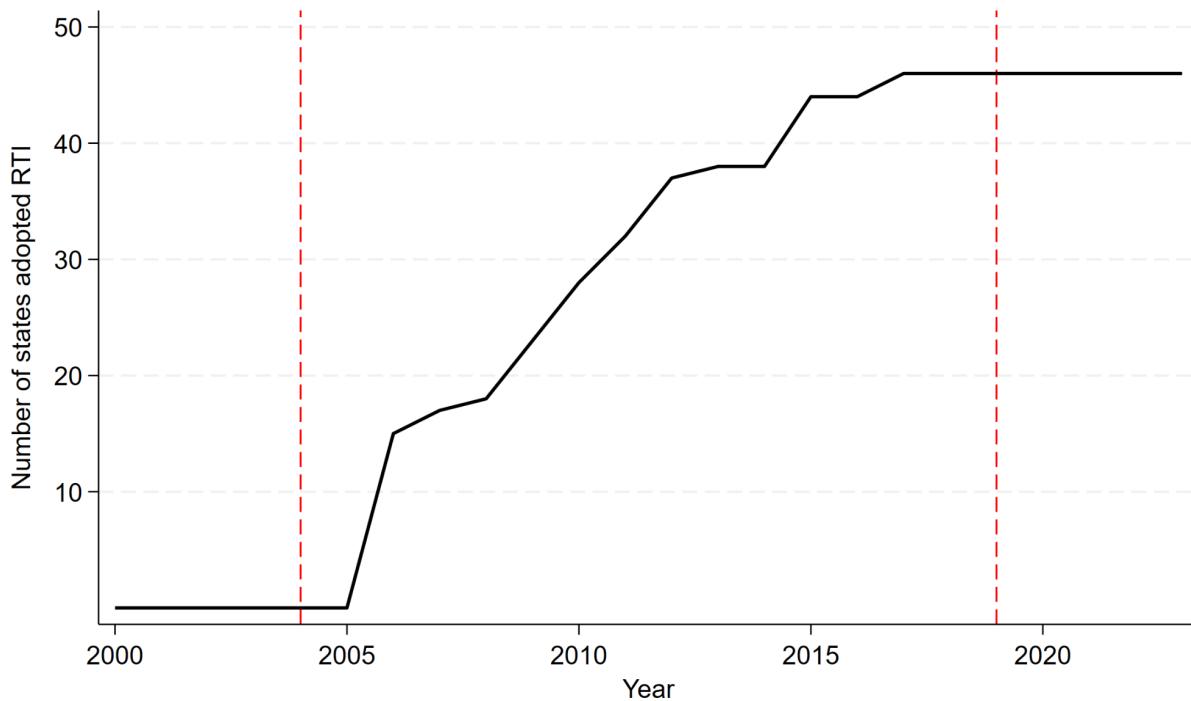
Tables

Table 1
Baseline Descriptive Statistics in 2006

	RTI sample		Non-RTI sample		Mean Diff
	Mean	SD	Mean	SD	
<i>Outcome Measures</i>					
% of students with disabilities	0.13	0.02	0.13	0.02	0.00
% of students with SLD	0.06	0.01	0.05	0.01	0.01
<i>Covariates</i>					
% White	0.78	0.11	0.74	0.17	0.04
% Hispanic	0.11	0.09	0.11	0.12	0.00
% Black	0.11	0.10	0.11	0.13	0.00
% Other	0.11	0.06	0.16	0.15	-0.04
% In school	0.83	0.01	0.83	0.02	0.00
% Female	0.49	0.01	0.49	0.01	0.00
% Enrolled in public school	0.70	0.03	0.70	0.04	0.00
% Enrolled in pre-K and K-12	0.87	0.02	0.87	0.03	0.00
% High-school dropout	0.01	0.00	0.01	0.00	0.00
Personal income (2018 dollars)	6413.35	680.24	6551.94	920.00	-138.59
Family income (2018 dollars)	84122.37	8372.84	89963.47	18677.43	-5841.10
% Received Food stamp	0.14	0.06	0.13	0.05	0.01
% of students in poverty	0.12	0.03	0.12	0.03	-0.01
% Rural	0.23	0.18	0.22	0.20	0.01
Total enrollment	996944.5	742447.4	954490.9	1288960.	42453.59
3	6	4	69		
Pupil-teacher ratio	16.02	2.82	14.76	2.10	1.26*
Per pupil expenditure (2018 dollars)	13177.14	1962.92	14655.28	3659.34	-1478.14
% of students received free- or reduced-price lunch	0.40	0.09	0.39	0.11	0.01
% ELL students	0.07	0.04	0.07	0.05	0.00

State population	6222432.	4928055.	5695650.	7212950.	526782.24
	80	34	56	48	
% AFDC recipients	0.01	0.00	0.01	0.01	0.00
% SNAP recipients	0.10	0.04	0.09	0.03	0.01
Gross state product	0.04	0.01	0.05	0.02	0.00
Unemployment rate	4.29	0.79	4.52	1.07	-0.24
Poverty Rate	11.98	2.44	11.80	3.48	0.18
State <i>N</i>	15		36		

Table 2.*Overall and Differential Effects of RTI Adoption on SLD & Disability Identifications*


	(1) All States	(2) States Required RTI vs. States Supported RTI	(3) States Required RTI vs. States without RTI	(4) States Supported RTI vs. States without RTI	(5) All States	(6) States Required RTI vs. States Supported RTI	(7) States Required RTI vs. States without RTI	(8) States Supported RTI vs. States without RTI
% of students with SLD (K-12)					% of students with all disabilities (K-12)			
RTI Adop tion	-0.00226*	-0.00182+	-0.00260+	-0.00244*	-0.00147	-0.00130	-0.000599	-0.00218
	(0.0008)	(0.0009)	(0.0013)	(0.0009)	(0.0012)	(0.0013)	(0.0012)	(0.0016)
<i>N</i>	765	645	375	510	765	645	375	510

Notes. The analyses were separate for four different sets for each outcome by state RTI adoption groups. The first set contains all states. The second set includes both state-supported and state-required RTI. The third set includes states that require RTI and those without RTI. The fourth set includes states that support RTI and those without RTI. All covariates in Table 1 are included in all models.

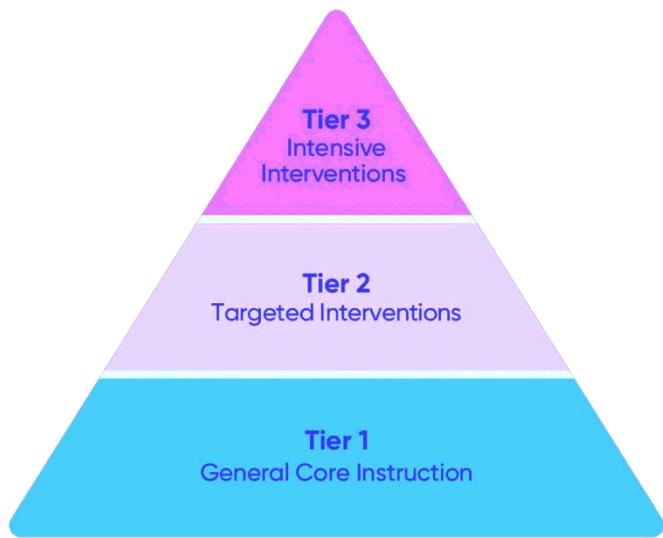
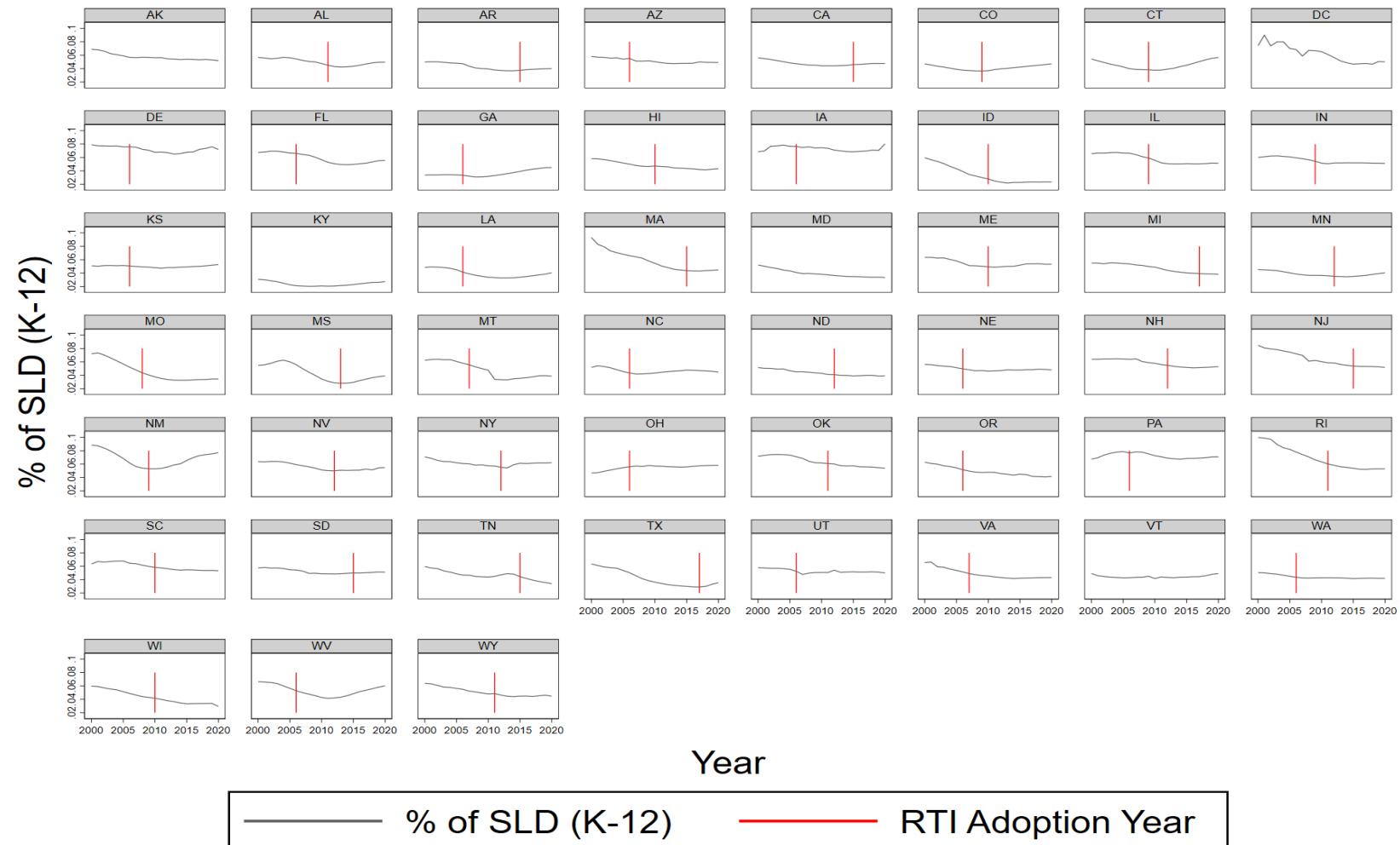
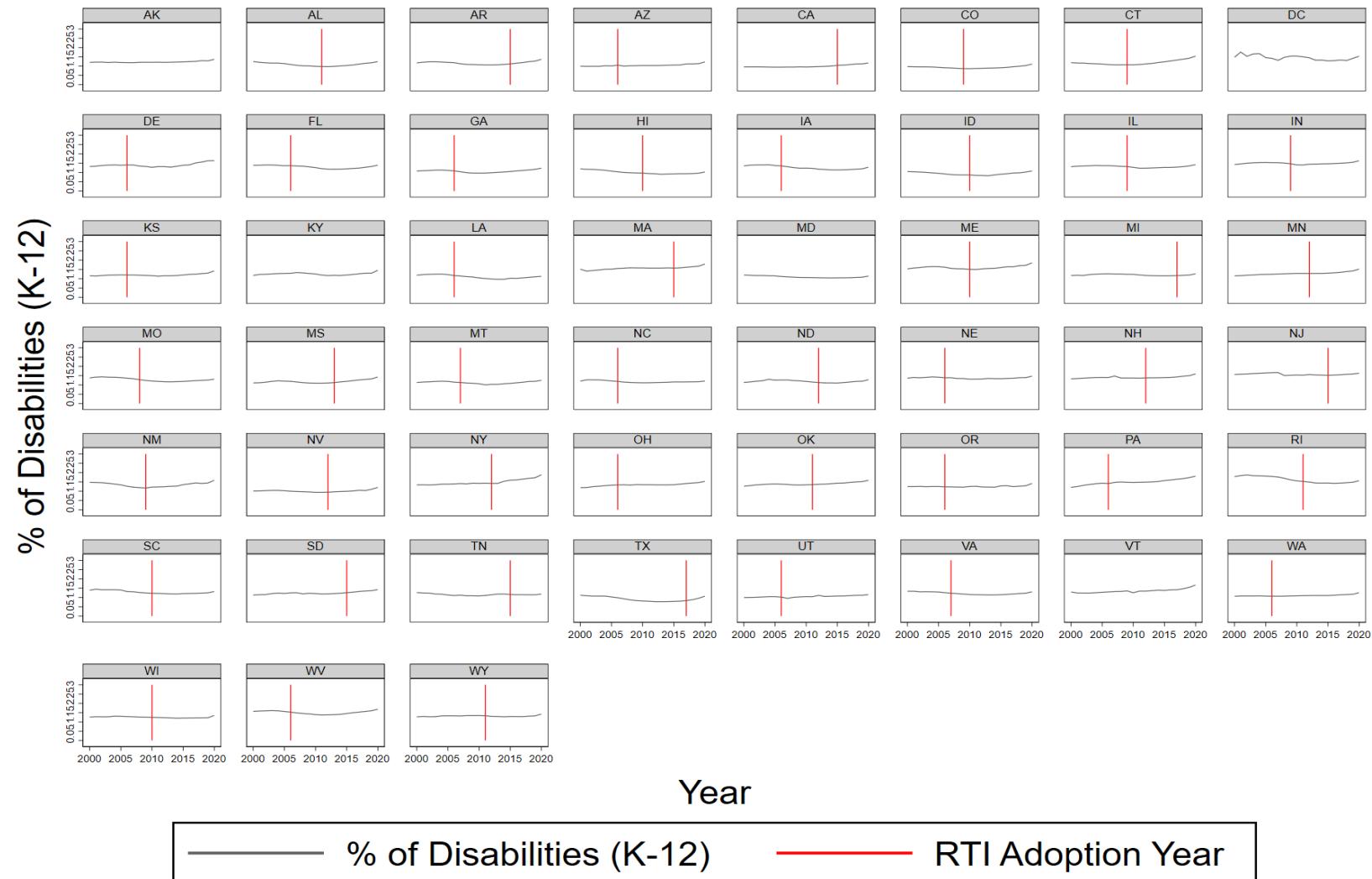
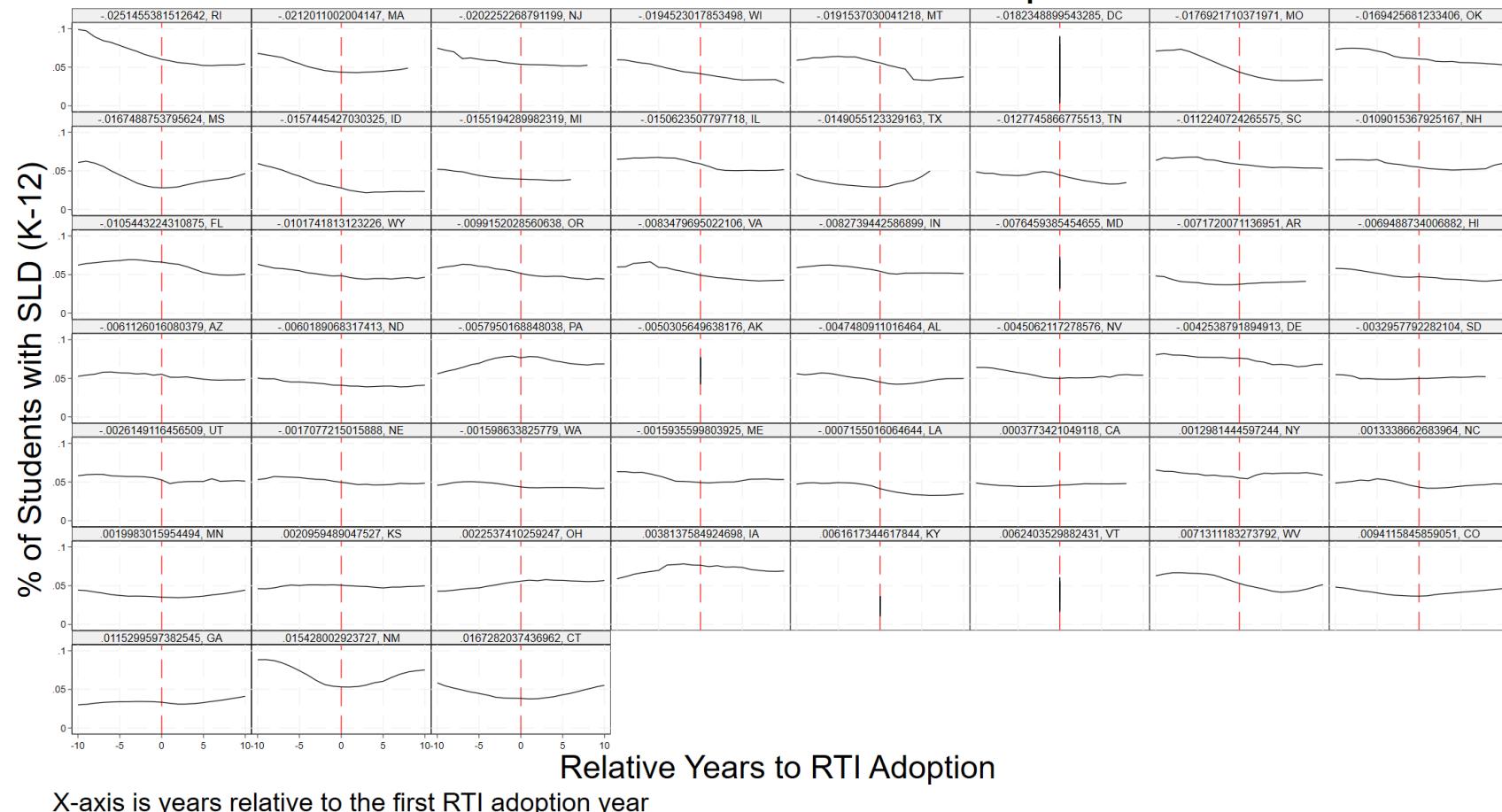

Figures

Figure 1


Number of States with RTI between 2000 and 2019




Figure 2
Response to Intervention in Three Tiers

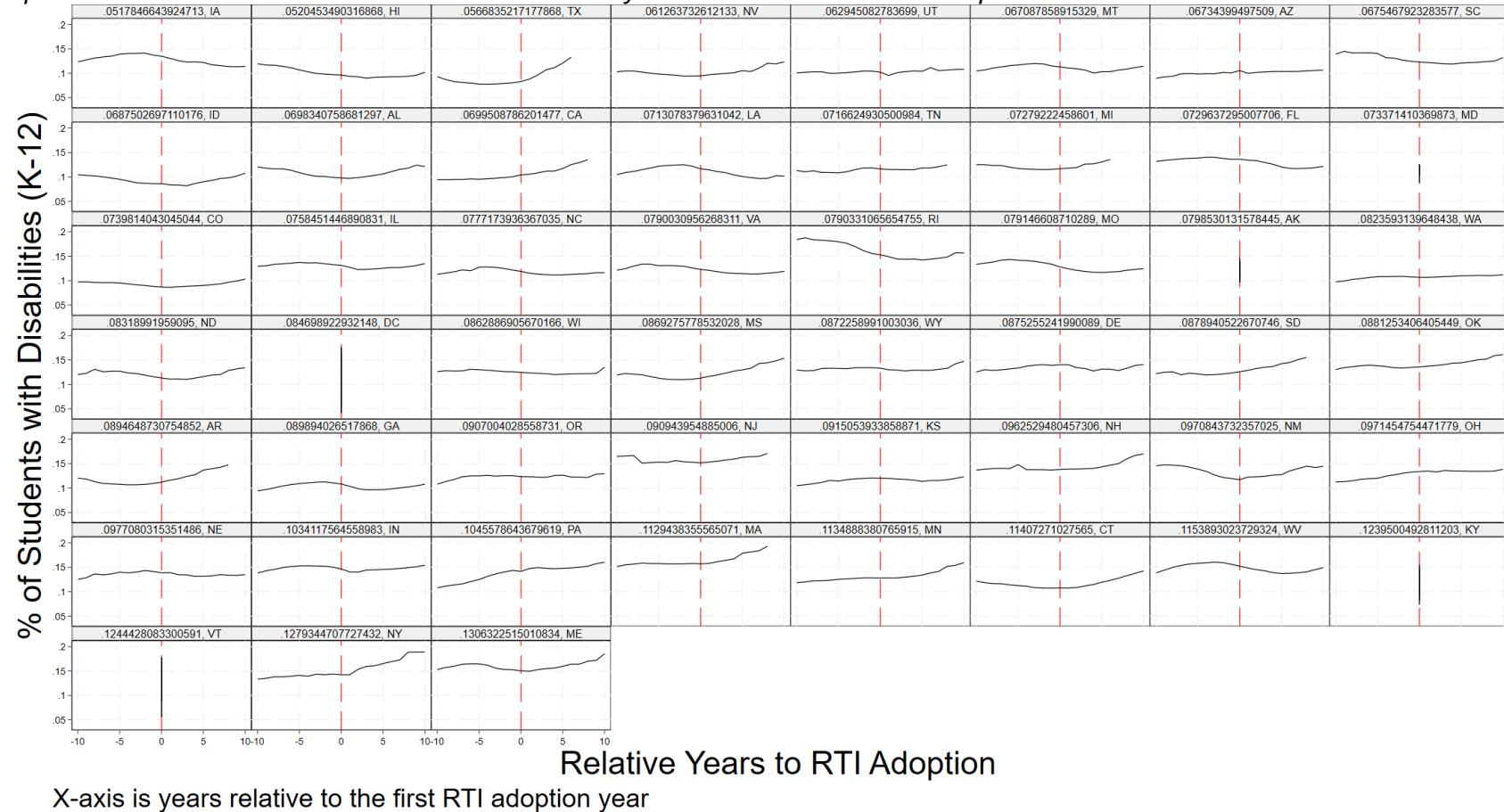

Figure 3
Percentage of Students (K-12) with SLD by States over Years

Figure 4*Percentage of Students (K-12) with Disabilities by States over Years*

Figure 5*Proportion of Students Identified with SLD by States Relative to RTI Adoption Years*

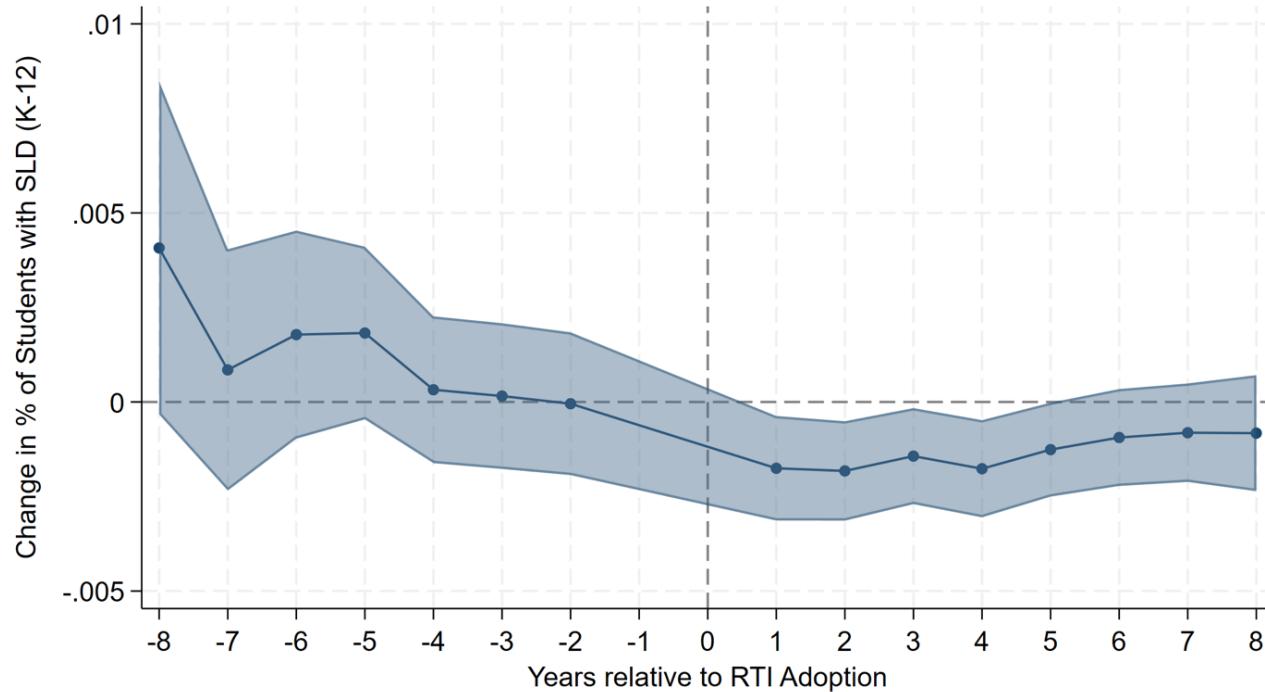
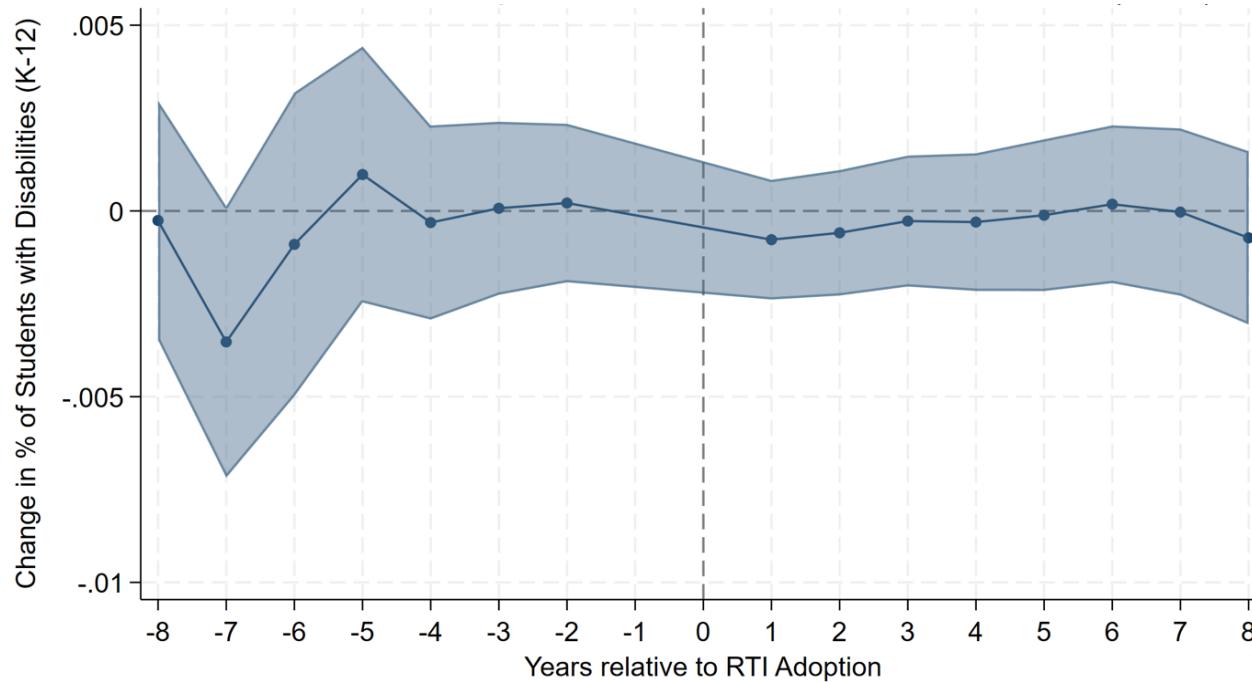

Notes. The graph is ordered by each state's relative decline in SLD rates, calculated as the 2020 rate divided by the 2006 rate. The value shown before each state abbreviation represents this decline.

Figure 6*Proportion of Students Identified with Disabilities by States Relative to RTI Adoption Years*

Notes. The graph is ordered by each state's relative decline in disability rates, calculated as the 2020 rate divided by the 2006 rate. The value shown before each state abbreviation represents this decline.


Figure 7

Event Study Estimates of State RTI on the Proportion of Students Identified with SLD

Figure 8

Event Study Estimates of State RTI on the Proportion of Students Identified with Disabilities

Appendix Table 1*RTI Start Year by State and Switching Status between 2006 and 2017*

Early switched States	Later switched States	Never-on States
Arizona	2006 Hawaii	2010 Alaska
Delaware	2006 Maine	2010 Kentucky
Florida	2006 South Carolina	2010 DC
Georgia	2006 Wisconsin	2010 Maryland
Iowa	2006 Idaho	2010 Vermont
Kansas	2006 Alabama	2011
Nebraska	2006 Rhode Island	2011
North Carolina	2006 Oklahoma	2011
Ohio	2006 Wyoming	2011
Pennsylvania	2006 Minnesota	2012
Louisiana	2006 Nevada	2012
Oregon	2006 North Dakota	2012
Washington	2006 New York	2012
West Virginia	2006 New Hampshire	2012
Utah	2006 Mississippi	2013
Montana	2007 Arkansas	2015
Virginia	2007 New Jersey	2015
Connecticut	2009 Tennessee	2015
Missouri	2009 California	2015
New Mexico	2009 Massachusetts	2015
Colorado	2009 South Dakota	2015
Illinois	2009 Michigan	2017
Indiana	2009 Texas	2017
Total N	23	5

Notes. Most information for RTI adoption is from papers of Berkeley et al. (2009) and Zirkel & Thomas (2010). Since these two papers only had RTI information during the study year, we checked each state's website of the Department of Education for details and double-checked the information with the two papers.

Appendix Table 2*RTI Policy Adoption Categorizations*

RTI-Supported States	RTI-Required States	Non-RTI States
California	Arkansas	Alabama
Connecticut	Colorado	Alaska
Delaware	Idaho	Arizona
Florida	Illinois	DC
Georgia	Iowa	Kentucky
Hawaii	Maine	Maryland
Indiana	Mississippi	South Carolina
Kansas	Missouri	Vermont
Louisiana	Montana	
Massachusetts	New Mexico	
Michigan	New York	
Minnesota	North Dakota	
Nebraska	Tennessee	
Nevada	Texas	
New Hampshire	Virginia	
New Jersey	West Virginia	
North Carolina	Wyoming	
Ohio		
Oklahoma		
Oregon		
Pennsylvania		
Rhode Island		
South Dakota		
Utah		
Washington		
Wisconsin		
Total N	26	17
		8

Notes. The categorization is different from Appendix Table 1, specifically for non-RTI states, which include states that did not have RTI in law.